Ετεροαναφορές

Kappos, A. J., & Panagopoulos, G. (2004). Performance-Based Seismic Design Of 3D R/C Buildings Using Inelastic Static And Dynamic Analysis Procedures. ISET Journal of Earthquake Technology, 41(1), 141–158.

  1. Marques, H., Cunha, J., Delgado, R. M., & Matos, A. C. (2007). Vulnerabilidade sísmica de instalações hospitalares. In SÍSMICA 2007 – 7o Congresso de sismologia e engenharia sísmica. Porto, Portugal, no. 57 pdf
  2. Vasilopoulos, A. A., Bazeos, N., & Beskos, D. E. (2008). Seismic design of irregular space steel frames using advanced methods of analysis. Steel and Composite Structures, 8(1), 53–83
  3. Taranenco, A. (2008). Calculul Structurilor Din Bare În Domeniul Postelastic, PhD Thesis, Universitatea Tehnica A Moldovei, Chisinau.
  4. Chandrasekaram, S., Serino, G., & Gupta, V. (2008). Performance evaluation and damage assessment of buildings subjected to seismic loading. In Structures Under Shock and Impact X (SUSI-2008), WIT Transactions on the Built Environment, Vol. 98, pp. 313-322
  5. Vasilopoulos, A. A., & Beskos, D. E. (2009). Seismic Design of Space Steel Frames Using Advanced Methods of Analysis. Soil Dynamics and Earthquake Engineering, 29(1), 194–218.
  6. Kraetzig, W.B. and Petryna, Y.S. (2009) “On structural damage processes of storm- and earthquake-induced low-cycle fatigue”, COMPDYN 2009, Rhodes, Greece.
  7. Erdem, R. T., Bagci, M., & Demir, A. (2011). A Comparative Evaluation of Performance Based Analysis Procedures According to 2007 Turkish Earthquake Code and FEMA-440. Mathematical and Computational Applications, 16(3), 605.
  8. Gandhi, B., & Shah, B. J. (2012). Performance BaseSeismic Design of ReinforcedConcrete Bridges. International Journal of Engineering, 1(5).
  9. Mohamed, E. M. F. (2012). Progressive collapse analysis of RC building frames with different seismic design levels (Doctoral dissertation, The American University in Cairo).
  10. Kumar, V.P., Teja, P.P. & Saha, P. (2012) “Variation In Percentage Of Steel For A Building Designed In Various Seismic Zones”. Academic Research, 1(1) pp. 29-37.
  11. Varadharajan, S., Sehgal, V. K., & Saini, B. (2013). Determination of Inelastic Seismic demands of RC moment resisting setback frames. Archives of Civil and Mechanical Engineering.
  12. Mohd Syafiq bin Yunus (2013) Seismic Analysis on Multi-Storey Steel Structures in Malaysia, Dissertation, Universiti Teknologi Petronas
  13. Krätzig, W. B., & Petryna, Y. S. (2014). Quasistatic Seismic Damage Indicators for RC Structures from Dissipating Energies in Tangential Subspaces. Mathematical Problems in Engineering
  14. Ćosić, M., & Brčić, S. (2013). Typology of NSPA pushover curves and surfaces for 3D performance-based seismic response of structures. Građevinski materijali i konstrukcije, 56(4), 19-38.
  15. Demir, A., Bagci, M. & Basaran, H. (2013). Evaluation of Existing Reinforced Concrete Buildings with Structural Package Programs, 2nd International Balkans Conference on Challenges of Civil Engineering, BCCCE, 23-25 May 2013, Epoka University, Tirana, Albania
  16. Varadharajan, S., Sehgal, V. K., & Saini, B. (2014). Seismic behavior of multistory RC building frames with vertical setback irregularity. The Structural Design of Tall and Special Buildings, 23(18), 1345-1380.
  17. Khalifa, E. S. (2014). Analytical model for steel fiber concrete composite short-coupling beam. Composites Part B: Engineering, 56, 318-329.
  18. Sangma, S. & Choudhury, S. (2014) Design of RC Frame-ShearWall Building Using UPBD Method. International Conference on Multidisciplinary Research & Practice (ICMRP-2014) 30th November 2014 at Ahmedabad Management Association, ATIRA Campus, IIM-A Road, Ahmedabad, Gujarat, India
  19. Monteiro, R., Delgado, R., & Pinho, R. (2015). Probabilistic Seismic Assessment of RC Bridges: Part II -Nonlinear Demand Prediction. In Structures. Elsevier.
  20. Skalomenos, K. A., Hatzigeorgiou, G. D., & Beskos, D. E. (2015). Application of the hybrid force/displacement (HFD) seismic design method to composite steel/concrete plane frames. Journal of Constructional Steel Research, 115, 179-190.
  21. Gupta, M. (2015) A Case Study on Inelastic Seismic Analysis of Six Storey RC Building, International Journal of Engineering Technology, Management and Applied Sciences, www.ijetmas.com, June 2015, Volume 3, Issue 6, ISSN 2349-4476
  22. Kokate, P. P. (2015) Performance Based Seismic Design, International Journal of Current Engineering and Technology, Vol.5, No.2 (April 2015)
  23. Muralidhar, G. B. (2015). Comparison of Seismic Susceptibility Assessment of Low to Medium Rise RC Buildings by Considering the Effect of Shearwall, International Journal of Science, Engineering and Technology, 3(2), 43-53
  24. Karaki, G.J. (2015) Selection And Scaling Of Ground Motion Records For Seismic Analysis Using An Optimization Algorithm. 20th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering, IKM 2015, Weimar, July 20-22, 91.

Kappos, A.J., Panagopoulos, G., Panagiotopoulos, Ch. and Penelis, Gr. (2006) “A hybrid method for the vulnerability assessment of R/C and URM buildings”, Bulletin of Earthquake Engineering, Vol. 4, No. 4, 391-413

  1. Pitilakis, K., Alexoudi, M., Argyroudis, S., Monge, O., Martin, C., “Earthquake risk assessment of lifelines”, Bulletin of Earthquake Engineering 4 (4), 2006, pp. 365-390
  2. Alexoudi, M., Anastasiadis A., K. Pitilakis, “Seismic Risk Assessment Of The Water System Of Thessaloniki”, 4th International Conference on Earthquake Geotechnical Engineering June 25-28, 2007, Paper No. 1632
  3. K. Pitilakis, Anastasiadis A., Kakderi, K, Argyroudis, S., Alexoudi, M., “Vulnerability Assessment And Risk Management Of Lifelines, Infrastructures And Critical Facilities. The Case Of Thessaloniki’s Metropolitan Area”, 4th International Conference on Earthquake Geotechnical Engineering June 25-28, 2007, Paper No. 1774
  4. R. Flesch et al., “European Manual for in-situ Assessment of Important Existing Structures”, 2007, Lessloss-Risk Mitigation For Earthquakes And Landslides, Report No. 2007/02
  5. R. Spence et al., “Earthquake Disaster Scenario Predictions & Loss Modelling for Urban Areas”, 2007, Lessloss-Risk Mitigation For Earthquakes And Landslides, Report No. 2007/07
  6. E. Faccioli, “Prediction of Ground Motion and Loss Scenarios for Selected Infrastructure Systems in European Urban Environments”, 2007, Lessloss-Risk Mitigation For Earthquakes And Landslides, Report No. 2007/08
  7. Rota, M. (2007) “Advances in the Derivation of Fragility Curves for Masonry Buildings”, PhD Thesis, Rose School: European School for Advanced Studies in Reduction of Seismic Risk, Università degli Studi di Pavia, Pavia, Italy
  8. Erberik, M.A., “Generation of fragility curves for Turkish masonry buildings considering in-plane failure modes”, 2008, Earthquake Engineering and Structural Dynamics 37 (3), pp. 387-405
  9. Hill, M., Rossetto, T., “Comparison of building damage scales and damage descriptions for use in earthquake loss modelling in Europe”, 2008, Bulletin of Earthquake Engineering 6 (2), pp. 335-365
  10. Lagaros, N.D., “Probabilistic fragility analysis: A tool for assessing design rules of RC buildings”, 2008, Earthquake Engineering and Engineering Vibration 7 (1), pp. 45-56
  11. Rota, M., Penna, A. and Strobbia, C.L. (2008) “Processing Italian Damage Data to Derive Typological Fragility Curves”, Soil Dynamics and Earthquake Engineering, Vol. 28, No. 10-11, pp. 933-947.
  12. Spence, R., So, E., Cultrera, G., Ansal, A., Pitilakis, K., Costa, A.C., Tönük, G., Argyroudis, S., Kakderi, K., Sousa, M.L. (2008) “Earthquake loss estimation and mitigation in Europe: A review and comparison of alternative approaches”, The 14th World Conference on Earthquake Engineering, Beijing, China
  13. Hill, M.P., Rossetto T. (2008) “Do existing damage scales meet the needs of seismic loss estimation?”, The 14th World Conference on Earthquake Engineering, Beijing, China
  14. Rota, M., Penna, A., Strobbia, C., Magenes, G. (2008) “Direct derivation of fragility curves from Italian post-earthquake survey data”, The 14th World Conference on Earthquake Engineering, Beijing, China
  15. Rota, M., Penna, A., Magenes, G., Strobbia, C. (2008) “Observed seismic vulnerability of Italian buildings”, Conference on Seismic Engineering Conference, Univ. Reggio, Calabria, Italy
  16. Κακδέρη, Κ., Αργυρούδης, Σ., Αλεξούδη, Μ., Αναστασιάδης, Α., Πιτιλάκης, Κ. (2008), “Σενάρια Σεισμικής Διακινδύνευσης και Στρατηγικές Διαχείρισης της Κρίσης για τον Λιμένα Θεσσαλονίκης”, 3ο ΠΣΑΜΤΣ, Αθήνα, Άρθρο 1938
  17. Πιτιλάκης, Κ., Αναστασιάδης, Α., Αργυρούδης, Σ., Κακδέρη, Κ., Αλεξούδη, Μ (2008), “Αποτίμηση Τρωτότητας και Διαχείριση Σεισμικής Διακινδύνευσης Δικτύων Κοινής Ωφέλειας, Υποδομών και Κρίσιμων Υπηρεσιών. Εφαρμογή στην Μητροπολιτική Θεσσαλονίκη”, 3ο ΠΣΑΜΤΣ, Αθήνα, Άρθρο 1939
  18. Agliardi, F., Crosta, G. B. and Frattini, P. (2009), “Integrating rockfall risk assessment and countermeasure design by 3D modelling techniques”, Natural Hazards and Earth System Sciences, 9(4), 1059-1073
  19. Haldar P, Singh Y. Seismic Performance And Vulnerability Of Indian Code- Designed RC Frame Buildings. ISET Journal of Earthquake Technology. 2009;46(1):29-45.
  20. Rota, M., Penna, A., Magenes, G. (2010), “A methodology for deriving analytical fragility curves for masonry buildings based on stochastic nonlinear analyses”, Engineering Structures 32 (5), 1312-1323
  21. Michel, C., Guéguen, P., Lestuzzi, P., Bard, P.Y. (2010) “Comparison between seismic vulnerability models and experimental dynamic properties of existing buildings in France”, Bulletin of Earthquake Engineering, 8(6), 1295-1307
  22. Patil, P. S., Singh, Y., Prasad, J. S. R., & Kumar, R. (2010). Seismic Performance and Vulnerability Assessment of URM School Buildings in Uttarakhand. IUP Journal of Structural Engineering, 3(2).
  23. Karababa, Faye S., Pomonis A. (2011) “Damage data analysis and vulnerability estimation following the August 14, 2003 Lefkada Island, Greece, Earthquake”. Bulletin of Earthquake Engineering 9(4), 1015-1046
  24. Marano, G.C., Greco, R., Morrone, E. (2011), “Analytical evaluation of essential facilities fragility curves by using a stochastic approach”, Engineering Structures 33(1), 191-201
  25. Eleftheriadou, A.K., Karabinis, A.I. (2011) Development of damage probability matrices based on Greek earthquake damage data. Earthquake Engineering and Engineering Vibration 10(1), 129-141
  26. Mitropoulou, C.C., Papadrakakis, M. (2011), “Developing fragility curves based on neural network IDA predictions”, Engineering Structures, 33 (12), 3409-3421
  27. Argyroudis, S.A., Pitilakis, K.D. (2012), “Seismic fragility curves of shallow tunnels in alluvial deposits”, Soil Dynamics and Earthquake Engineering, 35, 1-12.
  28. Tien, Y.M., Juang, C.H., Chen, J.-M., Pai, C.-H. (2012), “Isointensity-isoexposure concept for seismic vulnerability analysis – A case study of the 1999 Chi-Chi, Taiwan earthquake”, Engineering Geology, 131-132, 1-10
  29. Colangelo, F. (2012), “A simple model to include fuzziness in the seismic fragility curve and relevant effect compared with randomness”, Earthquake Engineering and Structural Dynamics, 41 (5) 969-986.
  30. Masi, A., Vona, M. (2012), “Vulnerability assessment of gravity-load designed RC buildings: Evaluation of seismic capacity through non-linear dynamic analyses”, Engineering Structures, 45, December 2012, 257-269
  31. Kontoes, C., Herekakis, T., Ieronymidi, E., Keramitsoglou, I., Papadopoulos, G. A., Paralikidis, S., Aifantopoulou, D., et al. (2012). Mapping Seismic Vulnerability and Risk of Cities: The MASSIVE Project. Journal of Earth Science and Engineering, 2, 496–513.
  32. Lari, S., Frattini, P., & Crosta, G. B. (2012). Local scale multiple quantitative risk assessment and uncertainty evaluation in a densely urbanised area (Brescia, Italy). Natural Hazards and Earth System Science, 12(11), 3387–3406
  33. Haldar, Putul, Yogendra Singh, and D. K. Paul. (2012) “Estimation of Capacity Curve Parameters for Indian RC Buildings with URM Infills.” Proc. 15th World Conference on Earthquake Engineering, , 15 WCEE. Lisbon, Portugal.
  34. Abrahamczyk, L., et al. (2012) “Empirical and Analytical Vulnerability Assessment of the Masonry Building Stock in Antakya (Hatay/Turkey).”, 15 WCEE. Lisbon, Portugal.
  35. Karantoni, F., Lyrantzaki, F., Tsionis, G., & Fardis, M. N. (2012) Seismic Fragility Functions of Stone Masonry Buildings, 15 WCEE. Lisbon, Portugal.
  36. Kyriakides, N. C., & Chrysostomou, C. Z. (2012) Framework for the derivation of fragility curves for deficient buildings using EC8 damage levels and Risk Mitigation for Cyprus, 15 WCEE. Lisbon, Portugal.
  37. Singh, Y., Lang, D. H., Prasad, J., & Deoliya, R. (2013). An Analytical Study on the Seismic Vulnerability of Masonry Buildings in India. Journal of Earthquake Engineering, 17(3), 399–422.
  38. Aldemir, A., Altuğ Erberik, M., Demirel, I. O., & Sucuoğlu, H. (2013). Seismic Performance Assessment of Unreinforced Masonry Buildings with a Hybrid Modeling Approach. Earthquake Spectra, 29(1), 33–57
  39. Haldar, P., Singh, Y., Lang, D. H., & Paul, D. K. (2013). Comparison of seismic risk assessment based on macroseismic intensity and spectrum approaches using “SeisVARA”. Soil Dynamics and Earthquake Engineering, 48, 267–281. doi:10.1016/j.soildyn.2013.01.016
  40. Hsieh, Meng-Hsun, Bing-Jean Lee, Tsu-Chiang Lei, and Jer-Yan Lin. (2013), “Development of medium- and low-rise reinforced concrete building fragility curves based on Chi-Chi Earthquake data.” Natural Hazards. Retrieved June 24, 2013 (http://link.springer.com/10.1007/s11069-013-0733-8).
  41. Selva, J., Argyroudis S., & Pitilakis, K.. (2013), “Impact on loss/risk assessments of inter-model variability in vulnerability analysis.” Natural Hazards 67(2):723–746.
  42. Wang, X., Frattini, P., Crosta, G. B., Zhang, L., Agliardi, F., Lari, S., & Yang, Z. (2013). Uncertainty assessment in quantitative rockfall risk assessment. Landslides, 1-12.
  43. Karapetrou, S.T., Fotopoulou, S.D., Pitilakis, K.D., 2013. “Consideration of aging effects on the time-dependent seismic vulnerability assessment of RC buildings” Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics 2013 (VEESD 2013). Vienna, Austria, Paper No. 152.
  44. Pitilakis, K. D., Karapetrou, S. T., & Fotopoulou, S. D. (2013). Consideration of aging and SSI effects on seismic vulnerability assessment of RC buildings. Bulletin of Earthquake Engineering, 1-22.
  45. Perrault, M. (2013). Évaluation de la vulnérabilité sismique de bâtiments à partir de mesures in situ, PhD Thesis, Université de Grenoble.
  46. Asprone, D., Jalayer, F., Simonelli, S., Acconcia, A., Prota, A., & Manfredi, G. (2013). Seismic insurance model for the Italian residential building stock. Structural Safety, 44, 70-79
  47. Meslem, A. & D’Ayala, D. (2013) Investigation Into Analytical Vulnerability Curves Derivation Aspects Considering Modelling Uncertainty For Infilled RC Buildings, COMPDYN 2013, Kos Island, Greece
  48. Perrault, M., Gueguen, P., Aldea, A., & SORIN, D. (2013). Reducing the uncertainties of the fragility curves using experimental testing in existing buildings: the case of the BRD Tower of Buccarest (Romania). Earthquake Engineering and Engineering Vibration, 12(4).
  49. Perrault, M., Gueguen, P., Aldea, A., & Demetriu, S. (2013). Using experimental data to reduce the single-building sigma of fragility curves: case study of the BRD tower in Bucharest, Romania. Earthquake Engineering and Engineering Vibration, 12(4), 643-658.
  50. Pomonis, A., G. Gaspari, and F. S. Karababa. (2013) “Seismic vulnerability assessment for buildings in Greece based on observed damage data sets.”, Bollettino di Geofisica Teorica ed Applica, Vol.54
  51. Mondal, G., & Tesfamariam, S. (2014). Effects of vertical irregularity and thickness of unreinforced masonry infill on the robustness of RC framed buildings. Earthquake Engineering & Structural Dynamics, 43(2), 205-223.
  52. Silva, V., Crowley, H., Varum, H., Pinho, R., & Sousa, R. (2014). Evaluation of analytical methodologies used to derive vulnerability functions. Earthquake Engineering & Structural Dynamics, 43(2), 181-204.
  53. Kakderi, K., & Pitilakis, K. (2014). Fragility Functions of Harbor Elements. In SYNER-G: Typology Definition and Fragility Functions for Physical Elements at Seismic Risk (pp. 327-356). Springer Netherlands.
  54. Muntasir Billah, A. H. M., & Shahria Alam, M. (2014). Seismic fragility assessment of highway bridges: a state-of-the-art review. Structure and Infrastructure Engineering, (ahead-of-print), 1-29
  55. Asteris, P. G., Chronopoulos, M. P., Chrysostomou, C. Z., Varum, H., Plevris, V., Kyriakides, N., & Silva, V. (2014). Seismic vulnerability assessment of historical masonry structural systems. Engineering Structures, 62, 118-134.
  56. Rossetto, T., D’Ayala, D., Ioannou, I., & Meslem, A. (2014). Evaluation of Existing Fragility Curves. In SYNER-G: Typology Definition and Fragility Functions for Physical Elements at Seismic Risk (pp. 47-93). Springer Netherlands.
  57. Riedel, I., Guéguen, P., Dunand, F., & Cottaz, S. (2014). Macroscale Vulnerability Assessment of Cities Using Association Rule Learning. Seismological Research Letters, 85(2), 295-305.
  58. Gehl, P., Desramaut, N., Réveillère, A., & Modaressi, H. (2014). Fragility Functions of Gas and Oil Networks. In SYNER-G: Typology Definition and Fragility Functions for Physical Elements at Seismic Risk (pp. 187-220). Springer Netherlands.
  59. Varum, H., Tarque, N., Silveira, D., Camata, G., Lobo, B., Blondet, M., & Costa, A. (2014). Structural behaviour and retrofitting of adobe masonry buildings. In Structural rehabilitation of old buildings (pp. 37-75). Springer Berlin Heidelberg.
  60. Al-Nimry, H., Resheidat, M., & Qeran, S. (2015). Rapid assessment for seismic vulnerability of low and medium rise infilled RC frame buildings. Earthquake Engineering and Engineering Vibration, 14(2), 275–293. doi:10.1007/s11803-015-0023-4
  61. Riedel, I., Guéguen, P., Dalla Mura, M., Pathier, E., Leduc, T., & Chanussot, J. (2014). Seismic vulnerability assessment of urban environments in moderate-to-low seismic hazard regions using association rule learning and support vector machine methods. Natural Hazards, 76(2),
  62. Asteris, P. G., Chronopoulos, M. P., Chrysostomou, C. Z., Varum, H., Plevris, V., Kyriakides, N., & Silva, V. (2014). Seismic vulnerability assessment of historical masonry structural systems. Engineering Structures, 62-63, 118–134.
  63. Bozza, A., Asprone, D., Jalayer, F., & Manfredi, G. (2015). How can insurers get prepared to catastrophes? Assessing earthquake expected losses from historical catalogue. In COMPDYN 2015 – 5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (pp. 3778–3792). National Technical University of Athens.
  64. Chaulagain, H., Rodrigues, H., Silva, V., Spacone, E., & Varum, H. (2015). Earthquake loss estimation for the Kathmandu Valley. Bulletin of Earthquake Engineering, 14(1), 59–88
  65. Chrysostomou, C. Z., Kyriakides, N., Papanikolaou, V. K., Kappos, A. J., Dimitrakopoulos, E. G., & Giouvanidis, A. I. (2015). Vulnerability assessment and feasibility analysis of seismic strengthening of school buildings. Bulletin of Earthquake Engineering, 13(12), 3809–3840.
  66. Godfrey, A., Ciurean, R. L., van Westen, C. J., Kingma, N. C., & Glade, T. (2015). Assessing vulnerability of buildings to hydro-meteorological hazards using an expert based approach – An application in Nehoiu Valley, Romania. International Journal of Disaster Risk Reduction, 13, 229–241
  67. Karapetrou, S. T., Fotopoulou, S. D., & Pitilakis, K. D. (2015). Seismic vulnerability assessment of high-rise non-ductile RC buildings considering soil–structure interaction effects. Soil Dynamics and Earthquake Engineering, 73, 42–57.
  68. Kassaras, I., Kalantoni, D., Pomonis, A., Kouskouna, V., Karababa, F., & Makropoulos, K. (2014). Development of seismic damage scenarios in Lefkada old town (W. Greece): part I—vulnerability assessment of local constructions with the use of EMS-98. Bulletin of Earthquake Engineering, 13(3), 799–825.
  69. Khalfan, M., Tait, M. J., & El-Dakhakhni, W. W. (2015). Seismic Risk Assessment of Nonengineered Residential Buildings: State of the Practice. Natural Hazards Review, 16(3), 04014027.
  70. Masi, A., Digrisolo, A., & Manfredi, V. (2015). Fragility curves of gravity-load designed RC buildings with regularity in plan. Earthquakes and Structures, 9(1), 1–27.
  71. Muntasir Billah, A. H. M., & Shahria Alam, M. (2014). Seismic fragility assessment of highway bridges: a state-of-the-art review. Structure and Infrastructure Engineering, 11(6), 804–832.
  72. Nanda, R. P., Paul, N. K., Chanu, N. M., & Rout, S. (2015). Seismic risk assessment of building stocks in Indian context. Natural Hazards, 78(3), 2035–2051.
  73. Paul, N. K., Chanu, N. M., & Nanda, R. P. (2015). Seismic risk assessment based on attenuation relation. Asian Journal of Civil Engineering, 16(8), 1175–1184.
  74. Pitilakis, K. (2015). Perspectives on European Earthquake Engineering and Seismology. (A. Ansal, Ed.)Geotechnical, Geological and Earthquake Engineering (Vol. 39). Cham: Springer International Publishing. doi:10.1007/978-3-319-16964-4
  75. Pitilakis, K., Karapetrou, S., & Tsagdi, K. (2015). Numerical investigation of the seismic response of RC buildings on soil replaced with rubber–sand mixtures. Soil Dynamics and Earthquake Engineering, 79, 237–252.
  76. Pitilakis, K., Riga, E., & Anastasiadis, A. (2015). Perspectives on Earthquake Geotechnical Engineering. (A. Ansal & M. Sakr, Eds.)Geotechnical, Geological and Earthquake Engineering (Vol. 37). Cham: Springer International Publishing.
  77. Trevlopoulos, K., & Guéguen, P. (2015). Application of a damage state method based on period elongation for time variant vulnerability of degrading reinforced concrete buildings. In COMPDYN 2015 – 5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (pp. 1532–1547). National Technical University of Athens.
  78. Khalfan, M., Tait, M.J., El-Dakhakhni, W.W. (2015) Seismic Risk Assessment of Nonengineered Residential Buildings: State of the Practice, Natural Hazards Review, Volume 16, Issue 3, 1 August 2015
  79. Mayoral, J. M., Argyroudis, S., & Castañon, E. (2016). Vulnerability of floating tunnel shafts for increasing earthquake loading. Soil Dynamics and Earthquake Engineering, 80, 1–10.
  80. Cavaleri, L., Costa, M., Saccone, M.G., Foti, C., Basile, G. (2015) Agrigento cathedral: Experimental campaign and study of damage evolution addressed to the assessment of the collapse risk, Handbook of Research on Seismic Assessment and Rehabilitation of Historic Structures, pp. 60 – 84
  81. Karapetrou, S., Manakou, M., Bindi, D., Petrovic, B., Pitilakis, K. (2016) “Time-building specific” seismic vulnerability assessment of a hospital RC building using field monitoring data, Engineering Structures, 112 pp. 114 – 132
  82. Trevlopoulos, K., Guéguen, P. (2016) Period elongation-based framework for operative assessment of the variation of seismic vulnerability of reinforced concrete buildings during aftershock sequences, Soil Dynamics and Earthquake Engineering, 84 pp. 224 – 237
  83. Martins, L., Silva, V., Marques, M., Crowley, H., Delgado, R. (2016) Development and assessment of damage-to-loss models for moment-frame reinforced concrete buildings, Earthquake Engineering and Structural Dynamics, 45 (5) pp. 797 – 817
  84. Ercolino, M., Ricci, P., Magliulo, G., Verderame, G.M. (2016) Influence of infill panels on an irregular RC building designed according to seismic codes, Earthquake and Structures, 10 (2) pp. 261 – 291
  85. Xu, J., An, J., Nie, G. (2016) A quick earthquake disaster loss assessment method supported by dasymetric data for emergency response in China, Natural Hazards and Earth System Sciences, 16 (3) pp. 885 – 899
  86. Mitropoulou, C.C., Kostopanagiotis, C., Kopanos, M., Ioakim, D., Lagaros, N.D. (2016) Influence of soil-structure interaction on fragility assessment of building structures, Structures, 6 pp. 85 – 98

Kappos, A.J., Lekidis, V., Panagopoulos, G., Sous, I., Theodulidis, N., Karakostas, C., Anastasiadis, T., Salonikios, T. and Margaris, B. (2007) “Analytical estimation of economic loss for buildings in the area struck by the 1999 Athens earthquake and comparison with actual repair costs”, Earthquake Spectra, Vol. 23, No. 2, pp. 333-355

  1. Rota, M. (2007) “Advances in the Derivation of Fragility Curves for Masonry Buildings”, PhD Thesis, Rose School: European School for Advanced Studies in Reduction of Seismic Risk, Università degli Studi di Pavia, Italy
  2. Crowley, H., Borzi, B., Pinho, R., Colombi, M. and Onida, M. (2008) “Comparison of Two Mechanics-Based Methods for Simplified Structural Analysis in Vulnerability Assessment”, Advances in Civil Engineering, Vol. 2008, Article ID 438379
  3. Σέξτος Α, Διακομιχάλης Μ, Μαρκάκης Γ, Μαυρόπουλος Κ, Κατσάνος Ε. (2009) “Διερεύνηση της επιρροής των παραδοχών της ανάλυσης στον προϋπολογισμό των οικοδομικών έργων.” 16ο Ελληνικό Συνέδριο Σκυροδέματος. Πάφος, Κύπρος
  4. Eleftheriadou, A.K., Karabinis, A.I. (2011) “Development of damage probability matrices based on Greek earthquake damage data”, Earthquake Engineering and Engineering Vibration, 10(1), 129-141.
  5. Bai, J., Hueste, M., Gardoni, P. (2011) “Scenario-based seismic loss estimation for concrete buildings in the central US”, Applications of Statistics and Probability in Civil Engineering – Proceedings of the 11th International Conference on Applications of Statistics and Probability in Civil Engineering, 41-47.
  6. Spence, R. (2011). Human Casualties in Earthquakes (Vol. 29). Springer Science+ Business Media.
  7. Bai, J. W. (2011). Seismic fragility analysis and loss estimation for concrete structures, PhD Thesis, Texas A&M University.
  8. Kontoes, Charalampos, et al. “Mapping Seismic Vulnerability and Risk of Cities: The MASSIVE Project.” Journal of Earth Science and Engineering 2 (2012): 496-513.
  9. Eleftheriadou, A.K., Karabinis, A.I. (2012) “Seismic vulnerability assessment of buildings based on damage data after a near field earthquake (7 September 1999 Athens – Greece)”, Earthquake and Structures 3 (2), 117-140
  10. Bai, J. W., Hueste, M. B. D., & Gardoni, P. (2014). Case Study: Scenario-Based Seismic Loss Estimation for Concrete Buildings in Mid-America. Earthquake Spectra.
  11. Dan, M. B., Armaş, I., Petrişor, A. I., Cerqua, A., Gociman, C. O., & Goretti, A. (2014). “Earthquake Hazard Impact and Urban Planning – Conclusion and Recommendations for Further Work.” In Earthquake Hazard Impact and Urban Planning, pp. 293-305, Springer Netherlands.
  12. Verderame, G. M., Ricci, P., De Luca, F., Del Gaudio, C., & De Risi, M. T. (2014). Damage scenarios for RC buildings during the 2012 Emilia (Italy) earthquake. Soil Dynamics and Earthquake Engineering, 66, 385–400.
  13. Pomonis, A., Gaspari, M., & Karababa, F. S. (2014). Seismic vulnerability assessment for buildings in Greece based on observed damage data sets. Bollettino Di Geofisica Teorica Ed Applicata, 55(2), 501–534.

Kappos, A.J., Panagopoulos, G., and Penelis, Gr. (2008) “Development of a seismic damage and loss scenario for contemporary and historical buildings in Thessaloniki, Greece”, Soil Dyn Earthquake Eng, Vol. 28, No. 10-11, pp. 836-850

  1. Makedon, T., Chatzigogos, N.P. and Spandos, S. (2009) “Engineering Geological Parameters Affecting the Response of Thessaloniki’s Urban Fill to a Major Seismic Event”, Engineering Geology, Vol. 104, No. 3-4, pp. 167–180
  2. Σέξτος Α, Διακομιχάλης Μ, Μαρκάκης Γ, Μαυρόπουλος Κ, Κατσάνος Ε. (2009) “Διερεύνηση της επιρροής των παραδοχών της ανάλυσης στον προϋπολογισμό των οικοδομικών έργων.” 16ο Ελληνικό Συνέδριο Σκυροδέματος. Πάφος, Κύπρος
  3. Lang, D.H., Singh, Y., Prasad, J.S.R. (2012) “Comparing empirical and analytical estimates of earthquake loss assessment studies for the city of Dehradun, India”, Earthquake Spectra 28 (2), 595-619
  4. Djaalali, F., Bensaibi, M., Bourahla, N., Davenne, L. (2012) “Vulnerability curves of masonry constructions Algiers case study”, Structural Engineering and Mechanics 42 (5), 609-629
  5. Kontoes, C., Herekakis, T., Ieronymidi, E., Keramitsoglou, I., Papadopoulos, G. A., Paralikidis, S., Aifantopoulou, D., et al. (2012). Mapping Seismic Vulnerability and Risk of Cities: The MASSIVE Project. Journal of Earth Science and Engineering, 2, 496–513.
  6. Toma, A. M. (2012). Deterministic method for assessing the degree of degradation for masonry condominium structures in romanian urban areas‟. The Bulletin of the Polytechnic Institute of Iasi. Construction & Architecture Section.
  7. Alam, M. N., Tesfamariam, S., & Alam, M. S. (2013). GIS-Based Seismic Damage Estimation: Case Study for the City of Kelowna, BC. Natural Hazards Review, 14(1), 66–78.
  8. Selva, J., & Sandri, L. (2013). Probabilistic Seismic Hazard Assessment: Combining Cornell‐Like Approaches and Data at Sites through Bayesian Inference. Bulletin of the Seismological Society of America, 103(3), 1709-1722.
  9. Selva, J., Argyroudis S., & Pitilakis, K.. (2013), “Impact on loss/risk assessments of inter-model variability in vulnerability analysis.” Natural Hazards 67(2):723–746.
  10. Syrmakezis, K., Mavrouli, O., Papaevaggeliou, P., Aggelakopolulou, E., Bakolas, A., & Moropoulou, A. (2013). Finite element analysis and fragility curves for the evaluation of restoration mortars behavior regarding the earthquake protection of historic structures. Soil Dynamics and Earthquake Engineering, 54, 61-65.
  11. D’Ayala, D. (2013). Handbook of Seismic Risk Analysis and Management of Civil Infrastructure Systems. Handbook of Seismic Risk Analysis and Management of Civil Infrastructure Systems. Elsevier.
  12. Selva, J., Argyroudis, S., & Pitilakis, K. (2013). Impact on loss/risk assessments of inter-model variability in vulnerability analysis. Natural Hazards, 67(2), 723–746.
  13. Lagomarsino, S., Cattari, S., (2014) “Fragility Functions of Masonry Buildings” Geotechnical, Geological and Earthquake Engineering, 27, 111-156
  14. Foraboschi, P. (2014). Resisting system and failure modes of masonry domes. Engineering Failure Analysis.
  15. Vicente, R., Dina, D., Ferreira, T. M., Varum, H., Costa, A., da Silva, J. M., & Lagomarsino, S. (2014). Seismic vulnerability and risk assessment of historic masonry buildings. In Structural rehabilitation of old buildings (pp. 307-348). Springer Berlin Heidelberg.
  16. Argyroudis, S., Selva, J., Kakderi, K., & Pitilakis, K. (2014). Application to the city of Thessaloniki. Geotechnical, Geological and Earthquake Engineering, 31, 199–204.
  17. D׳Orazio, M., Quagliarini, E., Bernardini, G., & Spalazzi, L. (2014). EPES – Earthquake pedestrians׳ evacuation simulator: A tool for predicting earthquake pedestrians׳ evacuation in urban outdoor scenarios. International Journal of Disaster Risk Reduction, 10(PA), 153–177.
  18. Argyroudis, S., Selva, J., Gehl, P., & Pitilakis, K. (2015). Systemic Seismic Risk Assessment of Road Networks Considering Interactions with the Built Environment. Computer-Aided Civil and Infrastructure Engineering, 30(7), 524–540.
  19. Mezzapelle, P.A., Lenci, S. (2015) On the assessment of the seismic vulnerability of ancient churches: The case of “San Francesco ad Alto” in Ancona (Italy), Handbook of Research on Seismic Assessment and Rehabilitation of Historic Structures, pp. 794 – 830
  20. Bal, I.E., Smyrou, E., Günes, B., Ilki, A. (2015) Mitigating seismic risks in historical masonry: An example project, Improving the Seismic Performance of Existing Buildings and other Structures 2015 – Proceedings of the 2nd ATC and SEI Conference on Improving the Seismic Performance of Existing Buildings and Other Structures, pp. 185 – 197
  21. Quagliarini, E., Bernardini, G., Wazinski, C., Spalazzi, L., D’Orazio, M. (2016) Urban scenarios modifications due to the earthquake: ruins formation criteria and interactions with pedestrians’ evacuation, Bulletin of Earthquake Engineering, 14 (4) pp. 1071 – 1101

Kappos, A.J., & Panagopoulos, G. (2010). “Fragility curves for reinforced concrete buildings in Greece”. Structure and Infrastructure Engineering, 6(1), 39-53

  1. Tsompanakis, Y., Lagaros, N. D., Psarropoulos, P. N. and Georgopoulos, E. C. (2010), “Probabilistic seismic slope stability assessment of geostructures”, Structure and Infrastructure Engineering, 6(1), 1573-2479
  2. Marano, G.C., Greco, R., Morrone, E. (2011), “Analytical evaluation of essential facilities fragility curves by using a stochastic approach”, Engineering Structures 33(1), 191-201
  3. Lang, D., Molina-Palacios, S., Lindholm, C., & Balan, S. (2012). Deterministic earthquake damage and loss assessment for the city of Bucharest, Romania. Journal of seismology, 16(1), 67-88.
  4. Tien, Y.M., Juang, C.H., Chen, J.-M., Pai, C.-H. (2012), “Isointensity-isoexposure concept for seismic vulnerability analysis – A case study of the 1999 Chi-Chi, Taiwan earthquake”, Engineering Geology, 131-132, 1-10
  5. Frangopol, D.M., Saydam, D., Kim, S. (2012), “Maintenance, management, life-cycle design and performance of structures and infrastructures: a brief review”, Structure and Infrastructure Engineering 8 (1), 1-25
  6. Lang, D.H., Singh, Y., Prasad, J.S.R. (2012), “Comparing empirical and analytical estimates of earthquake loss assessment studies for the city of Dehradun, India”, Earthquake Spectra 28 (2), 595-619
  7. Akbari, R. (2012) “Seismic fragility analysis of reinforced concrete continuous span bridges with irregular configuration”, Structure and Infrastructure Engineering 8 (9), 873-889
  8. Rajeev, P., Tesfamariam, S. (2012) “Seismic fragilities for reinforced concrete buildings with consideration of irregularities” Structural Safety 39, 1-13
  9. Pomonis, A., G. Gaspari, and F. S. Karababa. (2013) “Seismic vulnerability assessment for buildings in Greece based on observed damage data sets.”, Bollettino di Geofisica Teorica ed Applica, Vol.54
  10. Tesfamariam, S., Sánchez-Silva, M., & Rajeev, P. (2013). Effect of Topology Irregularities and Construction Quality on Life Cycle Cost of Reinforced Concrete Buildings. Journal of Earthquake Engineering
  11. Erduran, E., & Lindholm, C. (2012). A Critical Look at the Use of Design Spectrum Shape for Seismic Risk Assessment. Earthquake Spectra, 28(4), 1711-1721.
  12. Ahmad, N., Ali, Q., Ashraf, M., Alam, B. and Naeem, A. (2012) “Seismic Vulnerability of The Himalayan Half-Dressed Rubble Stone Masonry Structures, Experimental and Analytical Studies”. Natural Hazards and Earth System Sciences, Vol. 12(11), 3441-3454
  13. Belheouane, F. I., & Bensaibi, M. (2013) Assessment of Vulnerability Curves Using Vulnerability Index Method for Reinforced Concrete Structures, International Journal of Civil, Architectural Science and Engineering 7(6), pp. 226-229
  14. Khalfan, M. (2013). Fragility Curves For Residential Buildings In Developing Countries: A Case Study On Non-Engineered Unreinforced Masonry Homes In Bantul, Indonesia, Open Access Dissertations and Theses. Paper 7691
  15. Herrera, G.R., Vielma, J.C., Barbat, A.H., Pujades, L., (2013) Estado Del Conocimiento Sobre Metodologías De Evaluación De Vulnerabilidad Sísmica De Edificios, Ingeniería y Sociedad UC, 8(1), pp. 7-28
  16. Tesfamariam, S., Sánchez-Silva, M., & Rajeev, P. (2013). Effect of Topology Irregularities and Construction Quality on Life-Cycle Cost of Reinforced Concrete Buildings. Journal of Earthquake Engineering, 17(4), 590–610. doi:10.1080/13632469.2012.762955
  17. Rossetto, T., D,Ayala, D, Ioannou, I., Meslem, A. (2014) :Evaluation of Existing Fragility Curves”, SYNER-G: Typology Definition and Fragility Functions for Physical Elements at Seismic Risk. Springer Netherlands, 47-93
  18. Muntasir Billah, A. H. M., & Shahria Alam, M. (2014). Seismic fragility assessment of highway bridges: a state-of-the-art review. Structure and Infrastructure Engineering, (ahead-of-print), 1-29.
  19. Akbari, R., Aboutalebi, M. H., & Maheri, M. R. (2015). Seismic fragility assessment of steel X-braced and chevron-braced RC frames. Asian Journal of Civil Engineering, 16(1), 13–27.
  20. Gur, S., & Ray-Chaudhuri, S. (2013). Vulnerability assessment of container cranes under stochastic wind loading. Structure and Infrastructure Engineering, 10(12), 1511–1530.
  21. Pomonis, A., Gaspari, M., & Karababa, F. S. (2014). Seismic vulnerability assessment for buildings in Greece based on observed damage data sets. Bollettino Di Geofisica Teorica Ed Applicata, 55(2), 501–534.
  22. Rossetto, T., D’Ayala, D., Ioannou, I., & Meslem, A. (2014). SYNER-G: Typology Definition and Fragility Functions for Physical Elements at Seismic Risk. (K. Pitilakis, H. Crowley, & A. M. Kaynia, Eds.)Geotechnical, Geological and Earthquake Engineering (Vol. 27). Dordrecht: Springer Netherlands.
  23. Tamaki, T., & Tatano, H. (2014). Evaluation method of restoration process for road networks after volcanic eruption. In 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (Vol. 2014-Janua, pp. 2693–2698). IEEE.
  24. Beheshti-Aval, S.B., Khojastehfar, E., Noori, M., Zolfaghari, M.R. (2015) A comprehensive collapse fragility assessment of moment resisting steel frames considering various sources of uncertainties, Canadian Journal of Civil Engineering, 43 (2) pp. 118 – 131
  25. Banayan-Kermani, A., Bargi, K., Heidary-Torkamani, H. (2016) Seismic performance assessment of pile-supported wharves retrofitted by carbon fibre-reinforced polymer composite considering ageing effect, Advances in Structural Engineering, 19 (4) pp. 581 – 598
  26. Bilgin, H. (2016) Generation of fragility curves for typical RC health care facilities: Emphasis on hospitals in Turkey, Journal of Performance of Constructed Facilities, 30 (3)

Kappos, A.J., Panagopoulos, G.K., Sextos, A.G., Papanikolaou, V.K., & Stylianidis, K.C. (2010). Development of comprehensive earthquake loss scenarios for a Greek and a Turkish city – structural aspects. Earthquakes and Structures, 1(2), 197–214.

  1. . Pitilakis, K.D., Anastasiadis, A.I., Kakderi, K.G., Manakou, M.V., Manou, D.K., Alexoudi, M.N., Fotopoulou, S.D., Argyroudis, S.A., Senetakis, K.G. (2011) “Development of comprehensive earthquake loss scenarios for a Greek and a Turkish city: Seismic hazard, geotechnical and lifeline aspects”, Earthquake and Structures 2 (3), 207-232
  2. Eleftheriadou, A. K., & Karabinis, A. I. (2013). Evaluation of damage probability matrices from observational seismic damage data. Earthquake and Structures, 4(3), 299–324.
  3. Eidsvig, U. M. K., McLean, A., Vangelsten, B. V., Kalsnes, B., Ciurean, R. L., Argyroudis, S., & Kaiser, G. (2014). Assessment of socioeconomic vulnerability to landslides using an indicator-based approach: methodology and case studies. Bulletin of Engineering Geology and the Environment, 73(2), 307-324.
  4. Bortoluzzi, D., Casciati, F., Elia, L., & Faravelli, L. (2014). Remote monitoring of urban and infrastructural areas. Earthquakes and Structures, 7(4), 449–462.
  5. Trevlopoulos, K., & Guéguen, P. (2015). Application of a damage state method based on period elongation for time variant vulnerability of degrading reinforced concrete buildings. In COMPDYN 2015 – 5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (pp. 1532–1547). National Technical University of Athens.

Kakaletsis, D.J., Karayannis, C.G., Panagopoulos, G.K., (2011). Effectiveness of Rectangular Spiral Shear Reinforcement on Infilled R/C Frames Under Cyclic Loading. Journal of Earthquake Engineering. Vol. 15, No. 15, pp. 1179-1193

  1. Eom, T.-S., Kang, S.-M., Park, H.-G., Choi, T.-W., Jin, J.-M. (2014) “Cyclic loading test for reinforced concrete columns with continuous rectangular and polygonal hoops”, Engineering Structures 67, 39-49
  2. Turgay, T., Durmus, M. C., Binici, B., & Ozcebe, G. (2014). Evaluation of the Predictive Models for Stiffness, Strength, and Deformation Capacity of RC Frames with Masonry Infill Walls. Journal of Structural Engineering
  3. Azimi, M., Adnan, A. Bin, Md Tahir, M., Bin Mohd Sam, A. R., & Bin Sk Abd Razak, S. M. (2015). Seismic performance of ductility classes medium RC beam-column connections with continuous rectangular spiral transverse reinforcements. Latin American Journal of Solids and Structures, 12(4), 787–807.
  4. Basha, S. H., & Kaushik, H. B. (2016). Behavior and failure mechanisms of masonry-infilled RC frames (in low-rise buildings) subject to lateral loading. Engineering Structures, 111, 233–245.

Kappos, A.J., Panagiotopoulos, C. and Panagopoulos, G. (2004) “Derivation of fragility curves using inelastic time-history analysis and damage statistics”, ICCES’04, Madeira, Portugal, CD ROM Proceedings, pp. 665-672

  1. Anastasiadis, A.J., Argyroudis, S.A. (2007), “Seismic vulnerability analysis in urban systems and road networks. Application to the city of Thessaloniki, Greece”, International Journal of Sustainable Development and Planning 2 (3), pp. 287-301
  2. M. Papadrakakis, V. Papadopoulos, S. Konstantis, M. Kokolakis (2007), “Seismic Vulnerability Analysis οf Bridges With Random Material Properties”, CD ROM Proceed. COMPDYN, no. 1730
  3. Ioannou, I. (2010), Quantification of the Uncertainty in the Seismic Damage and Economic Loss for a Single Building, PhD Thesis, Faculty of Engineering and Physical Sciences, University of Surrey, U.K.

Lekidis, V., Karakostas, C., Sous, I., Anastasiadis, A., Kappos, A.J. and Panagopoulos, G. (2005) “Evaluation of economic loss for structures in the area struck by the 7/9/1999 Athens earthquake and comparison with actual repair costs”, Earthquake Resistant Engineering Structures V (ERES 2005), WIT Press, Skiathos, Greece

  1. Dan, M. B., Armaş, I., Petrişor, A. I., Cerqua, A., Gociman, C. O., & Goretti, A. (2014). “Earthquake Hazard Impact and Urban Planning – Conclusion and Recommendations for Further Work.” In Earthquake Hazard Impact and Urban Planning, pp. 293-305, Springer Netherlands.

Παναγόπουλος, Γ. και Κάππος, Α.Ι., (2006) “Υπολογισµός καµπυλών τρωτότητας για ελληνικά κτίρια από Ο/Σ”, 15ο Ελληνικό Συνέδριο Σκυροδέματος, Αλεξανδρούπολη

  1. Αργυρούδης, Σ., Πιτιλάκης, Κ. (2008), “Αριθμητικές Καμπύλες Τρωτότητας Σηράγγων Μικρού Βάθους υπό Εγκάρσια Σεισμική Φόρτιση”, 3ο ΠΣΑΜΤΣ, Αθήνα, Άρθρο 1960
  2. Μπαλτζοπούλου, Α., Πλέσιας, Α., Παπακωνσταντίνου, Κ., Βαβάτσικος, Κ., Καραμπίνης, Α. (2008), “Εκτίμηση Σεισμικής Διακινδύνευσης Κτιρίων. Εφαρμογή στην πόλη της Ξάνθης”, 3ο ΠΣΑΜΤΣ, Αθήνα, Άρθρο 2106

Παναγόπουλος, Γ. και Κάππος, A.Ι. (2009) “Διγραμμική προσέγγιση διαγραμμάτων μεγεθών δυνάμεων – παραμορφώσεων”, 16ο Ελληνικό Συνέδριο Σκυροδέματος, Πάφος, Κύπρος

  1. Penelis, Gr.G., Pananikolaou, V.Κ. (2010), “ Nonlinear Static and Dynamic Behavior of a 16-Story Torsionally Sensitive Building Designed According to Eurocodes”, Journal of Earthquake Engineering, 14(5), 706-725

Vamvatsikos, D., Kouris, L. A., Panagopoulos, G. K., Kappos, A. J., Rossetto, T., Lloyd, T. O., & Stathopoulos, T. (2010). Structural Vulnerability Assessment under Natural Hazards: A review. In F. M. Mazzolani (Ed.), Urban Habitat Constructions under Catastrophic Events (pp. 271–289). CRC Press

  1. Ehrlich, D., & Tenerelli, P. (2013). Optical satellite imagery for quantifying spatio-temporal dimension of physical exposure in disaster risk assessments. Natural hazards, 68(3), 1271-1289.
  2. Khalfan, M. (2013). Fragility Curves For Residential Buildings In Developing Countries: A Case Study On Non-Engineered Unreinforced Masonry Homes In Bantul, Indonesia, Open Access Dissertations and Theses. Paper 7691